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Can I use data donations to 
understand how citizens 
engage with news online?     

Can I use APIs to understand 
which news is shared across 
platforms?  

(Hase & Haim, 2024)

(Hase et al., 2023)
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QUALITY FRAMEWORK
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Perspectives

• Object (e.g., data vs. method)

• Criteria:

• Intrinsic vs. extrinsic

• Measurement vs. representation

• Objective

QUALITY FRAMEWORK
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QUALITY FRAMEWORK

Introduction I Define Quality I Assess Quality I Improve Quality 5



QUALITY FRAMEWORK

How „good“ is my data set? 
(or meta-data, variable)

How „good“ is my analysis method? 
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QUALITY FRAMEWORK

How „good“ is my data set? 
(or meta-data, variable)

Focus: „found“ digital trace data

▪ Platform-centric approaches

    (e.g., APIs, industry collaborations)

▪ User-centric approaches 

   (e.g., data donation, tracking, sensors)
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QUALITY FRAMEWORK
see similarly Birkenmaier et al., 2024; Daikeler et al., 2024
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QUALITY FRAMEWORK

Intrinsic: How „correct“ is my data?
(e.g., measurement, representation)

Extrinsic: How „usable“ is my data?
(e.g., FAIR, CARE principles)

see similarly Birkenmaier et al., 2024; Daikeler et al., 2024
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QUALITY FRAMEWORK
see similarly Rfll, 2020
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MAIN QUESTION

How can we define, assess, & 

improve the quality of digital trace 

data for research?
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I. DEFINE QUALITY

In CSS (and beyond), data quality is a problem we have 

ignored for too long.

With increasing awareness, we have started to adapt & 

develop quality criteria – which also led to a lack of 

conceptual agreement.
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DEFINE QUALITY: METHODS & METRICS

▪ Frameworks

▪ Error frameworks (Daikeler et al., 2024)

▪ Data quality frameworks: FAIR (Wilkinson et al., 2016), CARE (Carroll et al., 2021)

e.g., Batini et al., 2009; Daikeler et al., 2024; Ijab et al., 2019; Theh et al., 2020 
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DEFINE QUALITY: GAPS 
(Birkenmaier et al., 2024; Hammersley, 1997; Kitching, 2014; Shugars, 2024)

▪ Balance between unification & specialization across 

methods/disciplines

▪ Integrating epistemologies: Can we use “bad data” 
(e.g., “bias”) constructively?
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Error & data quality frameworks

1. Standardization

2. Epistemological 

assumptions

QUALITY FRAMEWORK
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Error & data quality frameworks

QUALITY FRAMEWORK

1. Standardization

2. Epistemological 

assumptions
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II. ASSESS QUALITY

In CSS, there is a “critical” turn dedicated to 

assessing data quality.

Given the lack of standardized methods & 

metrics, we still ask: “how good is good enough?”
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ASSESS QUALITY

▪ Not yet a standard 

▪ Only 55% of psychological studies assess internal quality (Gottfried et al., 2024)

▪ External quality sometimes tested (Batzdorfer et al., 2024; Eder & Jedinger, 2019)
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EXAMPLE: DATA DONATION STUDY

Can I use data donations to understand 
how citizens engage with news online? 
(Hase & Haim, 2024)
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EXAMPLE: DATA DONATION STUDY

How prevalent are errors of 

representation in data 

donation studies?                    

2 survey experiments:                   

online panel (N = 2,309) & 

student sample (N = 345)                    
(see Haim et al., 2023 for tool)

N = 423 data donation packages                                                  
(Facebook, Instagram, X/Twitter, YouTube)

Can we use also data to study 

digital news engagement?
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EXAMPLE: DATA DONATION STUDY

Intrinsic (error of representation):

✓ Track drop-out with para data

▪ e.g., 63% response rate survey vs. 12% response rate data donation

✓ Capture predictors of drop-out with survey data

▪ e.g., average non-response bias of 6-7% 
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EXAMPLE: DATA DONATION STUDY
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EXAMPLE: DATA DONATION STUDY

Intrinsic (error of representation):

✓ Track drop-out via para data

✓ Capture predictors of drop-out with survey data

×  Disentangle different errors (coverage, non-response)
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EXAMPLE: DATA DONATION STUDY

Intrinsic (measurement error):

✓ Track missing data via error logging

▪ e.g., tool failed to upload DDPs from 2 participants

▪ e.g., 9% of participants deleted data
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EXAMPLE: DATA DONATION STUDY

Intrinsic (measurement error):

✓ Track missing data via error logging

✓ Compare different data sources

▪ e.g., low correlation self-reported & observed engagement
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EXAMPLE: DATA DONATION STUDY

Intrinsic (measurement error):

✓ Track missing data via error logging

✓ Compare different data sources

×  Variation across preprocessing pipelines

▪ e.g., classifying news engagement with dictionary vs. ML

▪ e.g., classifying news engagement using different metrics/time thresholds
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EXAMPLE: DATA DONATION STUDY

Extrinsic (e.g., FAIR, CARE):

✓ Shared preregistration, code, data, data documentation

×  Adhered to FAIR principles
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ASSESS QUALITY: METHODS & METRICS
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ASSESS QUALITY: METHODS & METRICS

1. “How to”- Guidelines

▪ Data donation (Carrière et al., 2024)

▪ Tracking (Clemm von Hohenberg et al., 2024)

▪ Scraping (Boegershausen et al., 2022)

▪ Machine learning (Kapoo et al., 2024)
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ASSESS QUALITY: METHODS & METRICS

1. “How to”- Guidelines

2. Para data from initial data collection

▪ log error (e.g., response latency, missing data)

▪ qualitative data helpful!
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ASSESS QUALITY: METHODS & METRICS

1. “How to”- Guidelines

2. Para data from initial data collection

3. Additional data collection/analysis methods

▪ API vs. scraping: understand NAs (e.g., API audit)  
(Pearson et al., 2024; Pfeffer et al., 2023; Tromble et al., 2017)

▪ Multiverse approaches (Bosch et al., 2023)

▪ MultiTrait Multi Method(MTMM) models                          

(Cernat et al., 2024)
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ASSESS QUALITY: METHODS & METRICS

1. “How to”- Guidelines

2. Para data from initial data collection

3. Additional data collection/analysis methods

4. Simulate what could have gone wrong

▪ measurement error: bots (Schmitz et al., 2022)

▪ representation error: device-specific                             

tracking (Bosch et al., 2024)

Implications for direction, consistency, &                                

size of effects
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ASSESS QUALITY: METHODS & METRICS

5.   “How to”- guidelines & assessment tools

▪ FAIR checklists (Bahim et al., 2020)

▪ Assessment tools like F-UJI (Devaraju  & Huber, 2021; Devaraju et al., 2022)
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ASSESS QUALITY: GAPS

▪ Missing agreement upon… (Birkenmaier et al., 2024) 

▪ methods

▪ metrics

▪ thresholds for inacceptable quality

▪ Unclear predictors of quality issues (e.g., difference to surveys)
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 – 

QUALITY FRAMEWORK

Introduction I Define Quality I Assess Quality I Improve Quality

Error & data quality frameworks

1. Standardization

2. Epistemological 

assumptions

1. Methods, 

metrics, thresholds

2. Predictors

Para data (e.g., response latency, drop-out)

Add. data (e.g., MAR, retrieval/recall precision)

Simulations (e.g., downstream effect sizes)

Tools like F-UJI (e.g., FAIR-score)
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 – Error & data quality frameworks

1. Standardization

2. Epistemological 

assumptions
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1. Methods, 

metrics, thresholds

2. Predictors

Para data (e.g., response latency, drop-out)

Add. data (e.g., MAR, retrieval/recall precision)

Simulations (e.g., downstream effect sizes)

Tools like F-UJI (e.g., FAIR-score)

QUALITY FRAMEWORK
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III. IMPROVE QUALITY

Introduction I Define Quality I Assess Quality I Improve Quality

Criticizing our methods is great – but could 

(and should) we not do more?

Be critical, but constructive:    

Adapting existing (or developing new) error 

correction approaches as the next step in CSS.
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EXAMPLE: API STUDY

Can I use APIs to understand which 
news is shared across platforms?  
(Hase et al., 2023)
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EXAMPLE: API STUDY

How diverse is news across 

digital platforms?

Content analysis German media:

N = 11,000 posts/images/videos

WEB FB   INST TWI

Step 1. Data collection Crawling & scraping API API API

Step 2. Analysis Automated text (e.g, BERT transformer) & video analysis (e.g., face detection)
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EXAMPLE: API STUDY

Intrinsic (error of representation & measurement error):

✓ Combine data collection methods

▪ e.g., (1) assess non-random missingness → (2) improve retrieval 

recall/precision via scraping, API, & manual collection 
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EXAMPLE: API STUDY

Intrinsic (error of representation & measurement error):

✓ Combine data collection methods

× Improve misclassification through error correction methods

▪ e.g., improve errors in statistical ML inference via packages like 

misclassificationmodels (TeBlunthuis et al., 2024) or predictionerror (Fong & Tyler, 2021)

Introduction I Define Quality I Assess Quality I Improve Quality 28



IMPROVE QUALITY

▪ Interdisciplinary “clash”:

different definitions of quality + different quality assessments =

very different error correction approaches

▪ Take advantage of this: Many ways to improve quality! 
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IMPROVE QUALITY: METHODS & METRICS

Introduction I Define Quality I Assess Quality I Improve Quality

1. Plan ahead

▪ Talk to IRB, data protection officer, data stewards, …

▪ Data management plan (e.g., use files), preregistration

▪ Consider non-proprietary methods
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IMPROVE QUALITY: METHODS & METRICS

Introduction I Define Quality I Assess Quality I Improve Quality

1. Plan ahead

2. Combine methods for data collection

▪ Repeated/different data access

▪ Rehydration (Knöpfle & Schatto-Eckrodt, 2024; Knüpfer, 2024)
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IMPROVE QUALITY: METHODS & METRICS

Introduction I Define Quality I Assess Quality I Improve Quality

1. Plan ahead

2. Combine methods for data collection

3. Turn “found” to “designed” data where possible
▪ Use survey design methods                                                                                

(Hase & Haim, 2024; Keusch et al., 2024)
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IMPROVE QUALITY: METHODS & METRICS

Introduction I Define Quality I Assess Quality I Improve Quality

1. Plan ahead

2. Combine methods for data collection

3. Turn “found” to “designed” data where possible

4. Statistically correct for errors

▪ e.g., weighting to correct for drop-out                                                   
(Pak et al., 2022)

▪ e.g., ML-classification for preprocessing

(Fong & Tyler, 2021; TeBlunthuis et al., 2024)
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IMPROVE QUALITY: METHODS & METRICS

Introduction I Define Quality I Assess Quality I Improve Quality

1. Plan ahead

2. Combine methods for data collection

3. Turn “found” to “designed” data where possible

4. Statistically correct for errors

5. Ask different questions

▪ e.g., test effects of interventions on                                                      

rather than describe individual behavior
(Straub et al., 2024; Yu et al., 2024)
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6. Document everything, including errors 

▪ Datasheets for Datasets (Gebru et al., 2021)

▪ Data Statements for NLP (Bender & Friedman, 2018)

▪ Total Error Sheets for Datasets                                                                 
(Fröhling et al., 2023)

IMPROVE QUALITY: METHODS & METRICS

Introduction I Define Quality I Assess Quality I Improve Quality 31



6. Document everything, including errors 

7. Engage in community-based initiatives

▪ Collective data collection (Pfeffer et al., 2023)

▪ Policy efforts, e.g. around DSA                                                                          
(Hase et al., 2024; Jaursch et al., 2024)

IMPROVE QUALITY: METHODS & METRICS
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6. Document everything, including errors 

7. Engage in community-based initiatives

8. Push for infrastructural changes

▪ Peer-reviewed data publications (Carpenter, 2017)

▪ Quality check badges (Gottfried et al., 2024)

▪ Funding of infrastructure initiatives 

IMPROVE QUALITY: METHODS & METRICS
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IMPROVE QUALITY: GAPS

Introduction I Define Quality I Assess Quality I Improve Quality

▪ Transferability of existing error correction methods to CSS

▪ Constructive perspective on bias

▪ Identify sub-populations by making “big data” small (Baek et al., 2022)

▪ Explore power structures in society (Cabitza et al., 2023; Kathirgamalingam et al., 2024)
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QUALITY FRAMEWORK

Introduction I Define Quality I Assess Quality I Improve Quality

1. Methods, 

metrics, thresholds

2. Predictors

Error & data quality frameworks

1. Standardization

2. Epistemological 

assumptions

Para data (e.g., response latency, drop-out)

Add. data (e.g., MAR, retrieval/recall precision)

Simulations (e.g., downstream effect sizes)

Tools like F-UJI (e.g., FAIR-score)

Plan ahead (e.g., data management plan)

Make „found“ data „designed“ 

Use statistical correction (e.g., ML correction)

Push for infrastructural change (e.g., badges)

 

 

1. Transferability

2. Constructive view 

on „bias“
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