FROM AWARENESS TO ACTION

Defining, Assessing, & Improving the Quality of Digital Trace Data

Dr. Valerie Hase, LMU Munich

www.valerie-hase.com

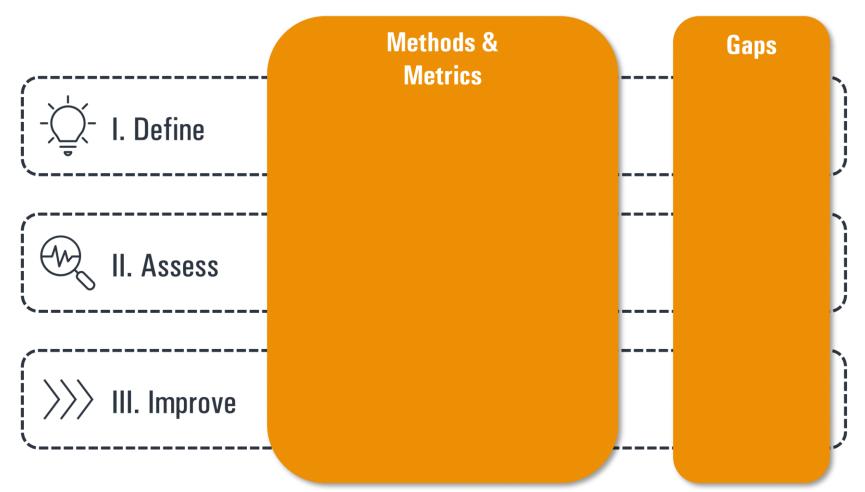
Can I use data donations to understand how citizens engage with news online?

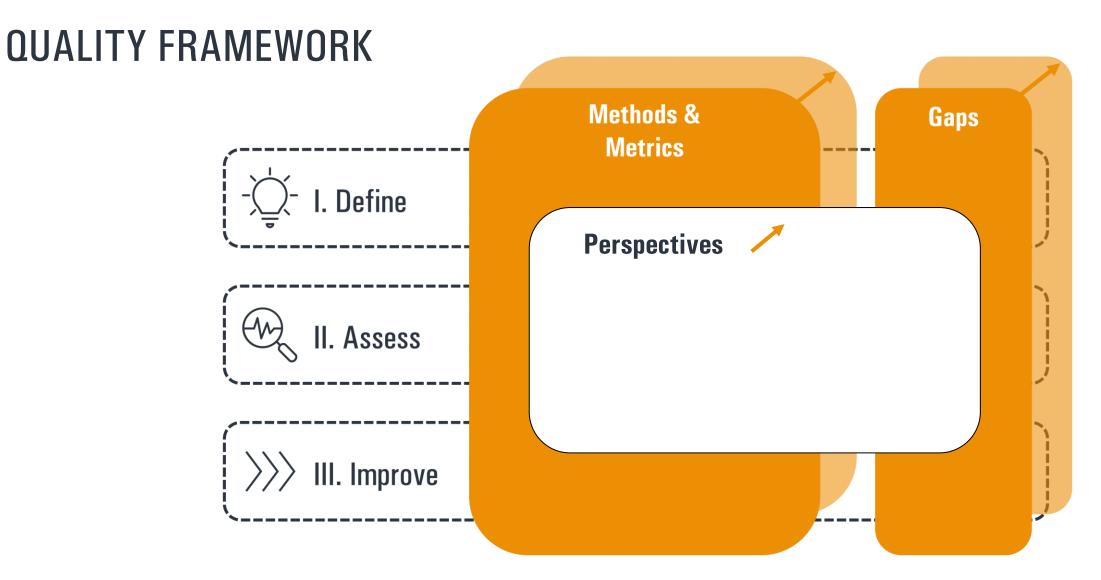
(Hase & Haim, 2024)

Can I use APIs to understand which news is shared across platforms?

(Hase et al., 2023)

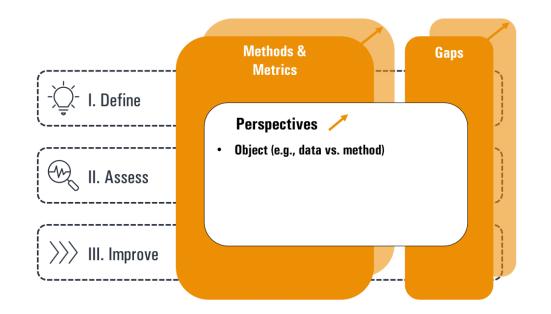
- I. Define: What are criteria for evaluating quality? II. Assess: How do I assess quality? >>> III. Improve: How do I improve quality?

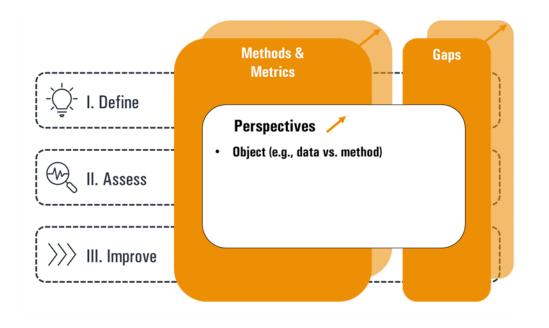




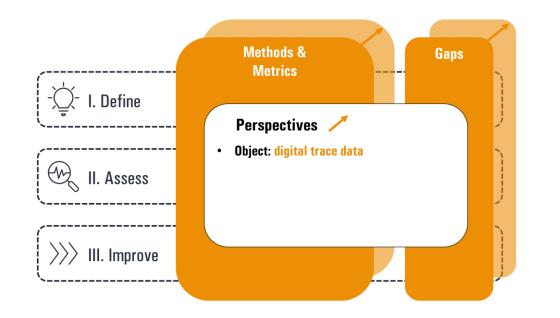
Introduction I Define Quality I Assess Quality I Improve Quality

4





How "good" is my data set? (or meta-data, variable)

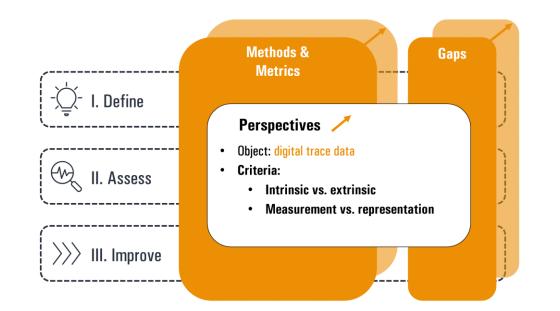


How "good" is my data set? (or meta-data, variable)

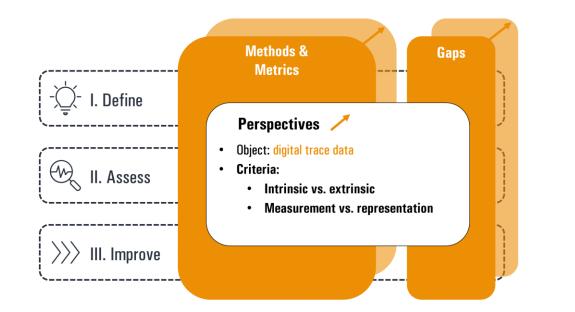
Focus: "found" digital trace data

- Platform-centric approaches (e.g., APIs, industry collaborations)
- User-centric approaches
 (e.g., data donation, tracking, sensors)

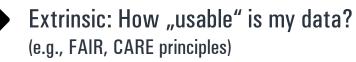
see similarly Birkenmaier et al., 2024; Daikeler et al., 2024



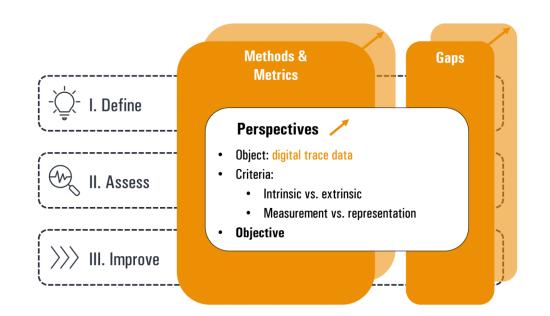
see similarly Birkenmaier et al., 2024; Daikeler et al., 2024

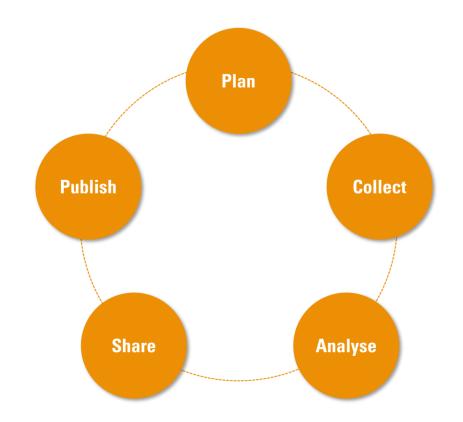


Intrinsic: How "correct" is my data? (e.g., measurement, representation)

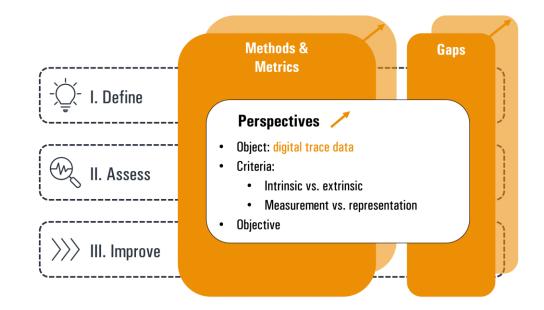


see similarly Rfll, 2020





MAIN QUESTION

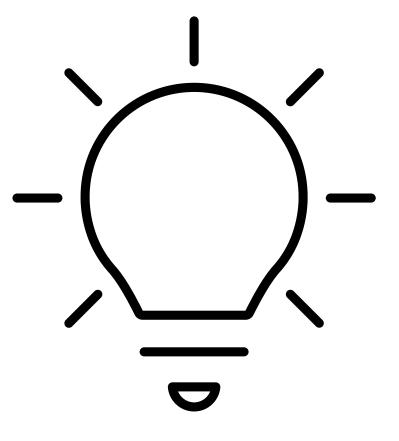


How can we define, assess, & improve the quality of digital trace data for research?

I. DEFINE QUALITY

In CSS (and beyond), data quality is a problem we have **ignored for too long**.

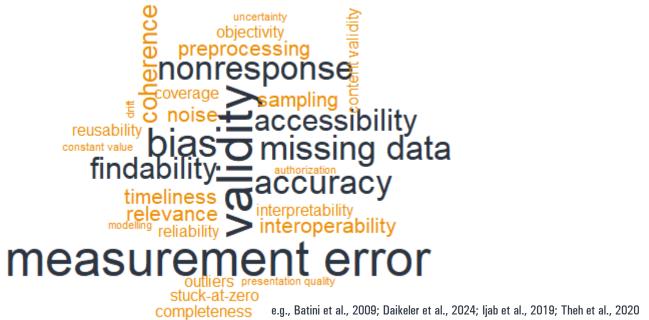
With increasing awareness, we have started to adapt & develop quality criteria – which also led to a lack of conceptual agreement.

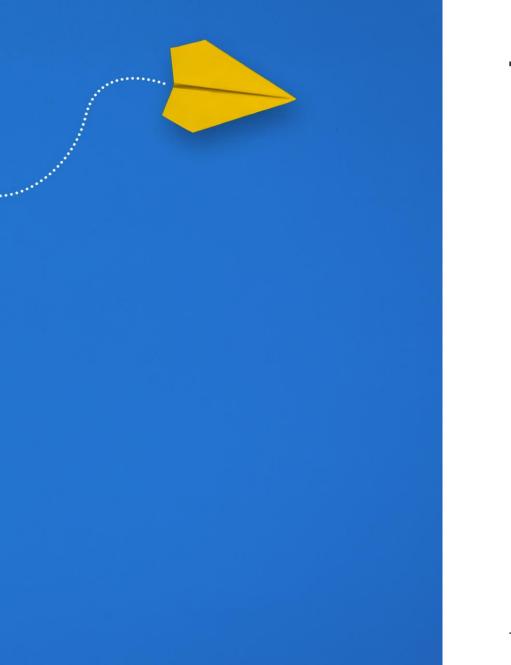


DEFINE QUALITY: METHODS & METRICS

Frameworks

- Error frameworks (Daikeler et al., 2024)
- Data quality frameworks: FAIR (Wilkinson et al., 2016), CARE (Carroll et al., 2021)

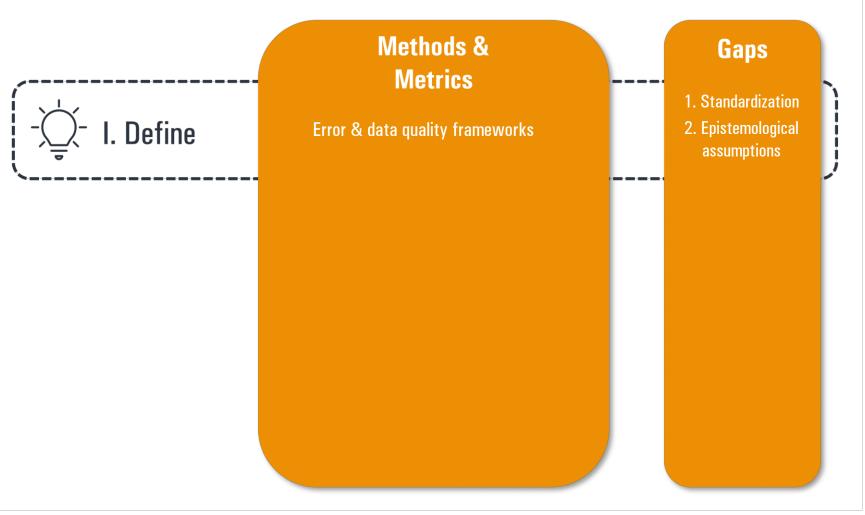


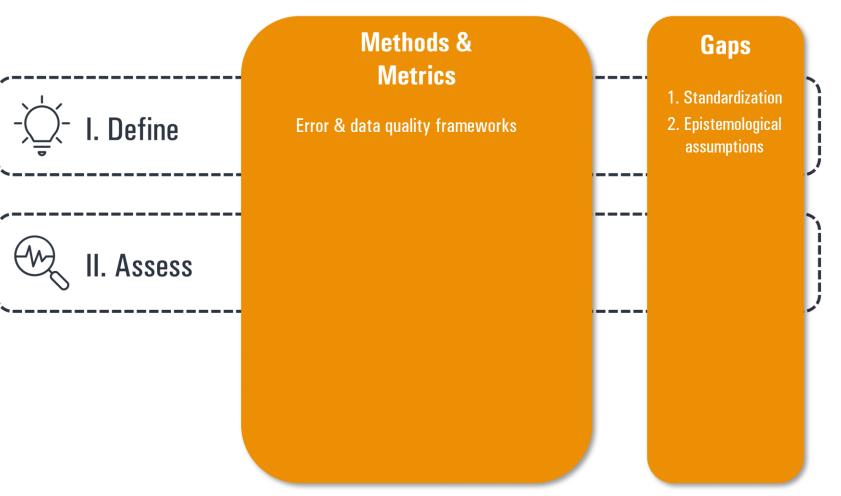


DEFINE QUALITY: GAPS

(Birkenmaier et al., 2024; Hammersley, 1997; Kitching, 2014; Shugars, 2024)

- Balance between unification & specialization across methods/disciplines
- Integrating epistemologies: Can we use "bad data" (e.g., "bias") constructively?

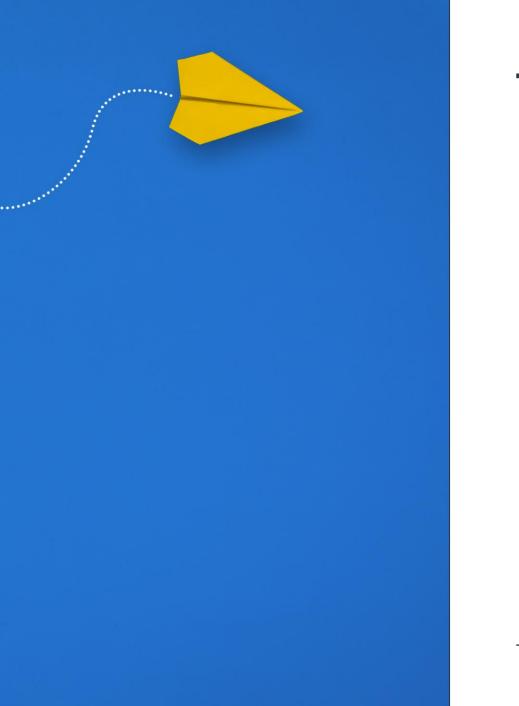




II. ASSESS QUALITY

In CSS, there is a "critical" turn dedicated to assessing data quality.

Given the lack of standardized methods & metrics, we still ask: "how good is good enough?"



ASSESS QUALITY

- Not yet a standard
 - Only 55% of psychological studies assess internal quality (Gottfried et al., 2024)
 - External quality sometimes tested (Batzdorfer et al., 2024; Eder & Jedinger, 2019)

Can I use data donations to understand how citizens engage with news online? (Hase & Haim, 2024)

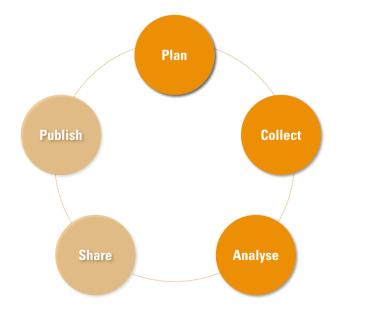
?

How prevalent are errors of representation in data donation studies?

2 survey experiments: online panel (N = 2,309) & student sample (N = 345) (see Haim et al., 2023 for tool)

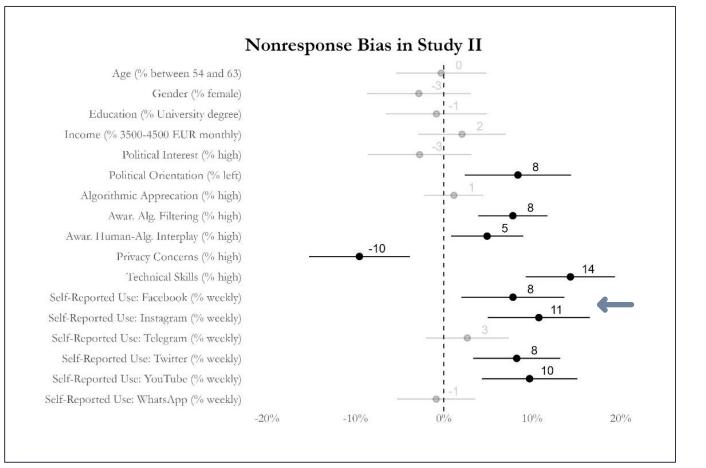
N = 423 data donation packages (Facebook, Instagram, X/Twitter, YouTube) ?

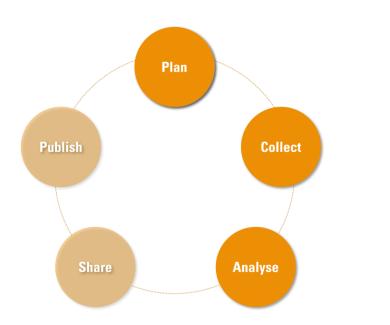
Can we use *also* data to study digital news engagement?

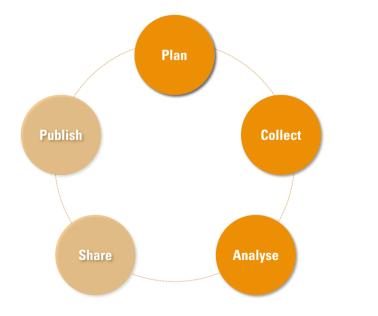


Intrinsic (error of representation):

- ✓ Track drop-out with para data
 - e.g., 63% response rate survey vs. 12% response rate data donation
- \checkmark Capture predictors of drop-out with survey data
 - e.g., average non-response bias of 6-7%

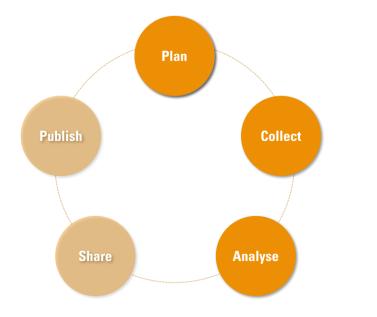






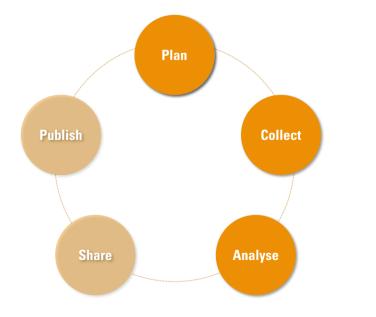
Intrinsic (error of representation):

- ✓ Track drop-out via para data
- ✓ Capture predictors of drop-out with survey data
- × Disentangle different errors (coverage, non-response)



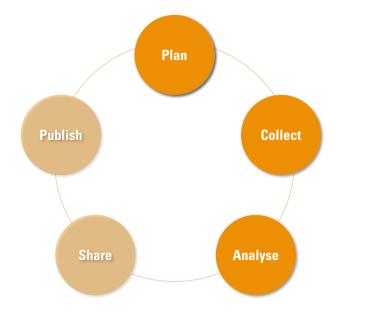
Intrinsic (measurement error):

- ✓ Track missing data via error logging
 - e.g., tool failed to upload DDPs from 2 participants
 - e.g., 9% of participants deleted data



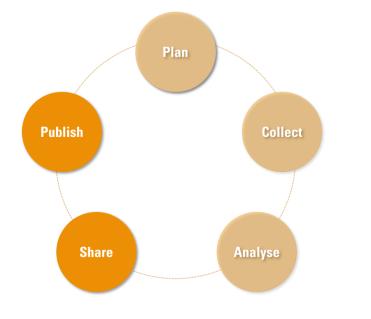
Intrinsic (measurement error):

- ✓ Track missing data via error logging
- ✓ Compare different data sources
 - e.g., low correlation self-reported & observed engagement



Intrinsic (measurement error):

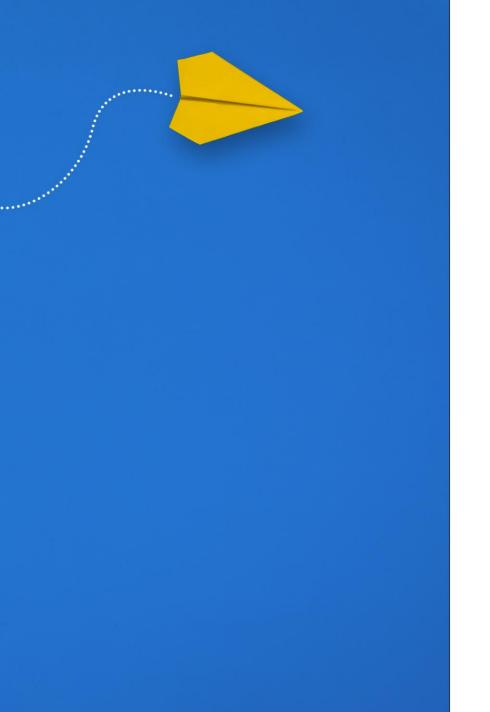
- ✓ Track missing data via error logging
- ✓ Compare different data sources
- × Variation across preprocessing pipelines
 - e.g., classifying news engagement with dictionary vs. ML
 - e.g., classifying news engagement using different metrics/time thresholds

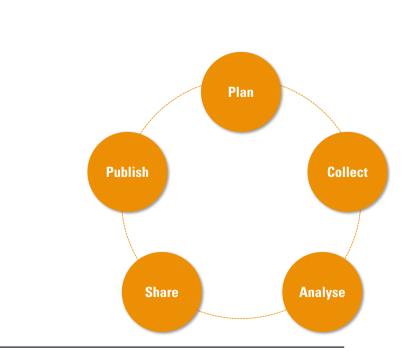


Extrinsic (e.g., FAIR, CARE):

- \checkmark Shared preregistration, code, data, data documentation
- × Adhered to FAIR principles

	Score earned:		Fair level:	
Findable:	4 of 7	0	moderate	
Accessible:	1 of 3	0	initial	
Interoperable:	1 of 4	C	initial	
Reusable:	3 of 10	0	initial	

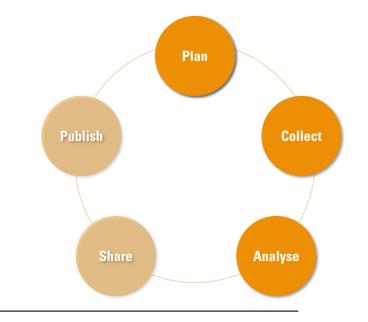




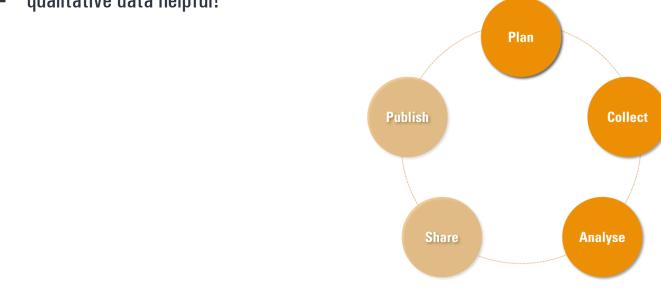


1. "How to"- Guidelines

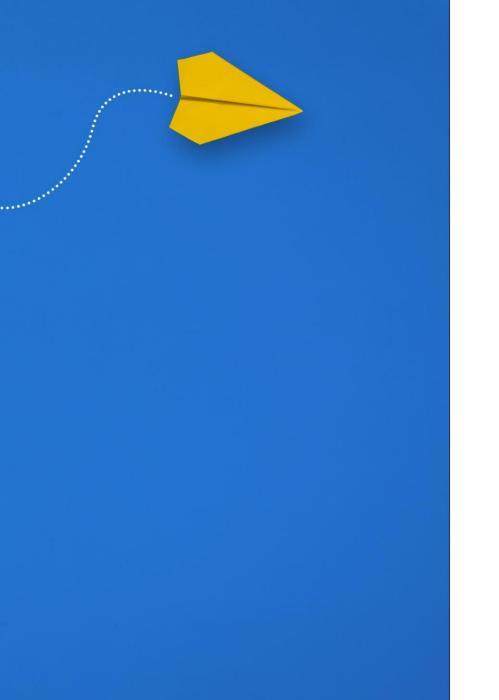
- Data donation (Carrière et al., 2024)
- Tracking (Clemm von Hohenberg et al., 2024)
- Scraping (Boegershausen et al., 2022)
- Machine learning (Kapoo et al., 2024)



- "How to"- Guidelines 1.
- Para data from initial data collection 2.
 - log error (e.g., response latency, missing data)

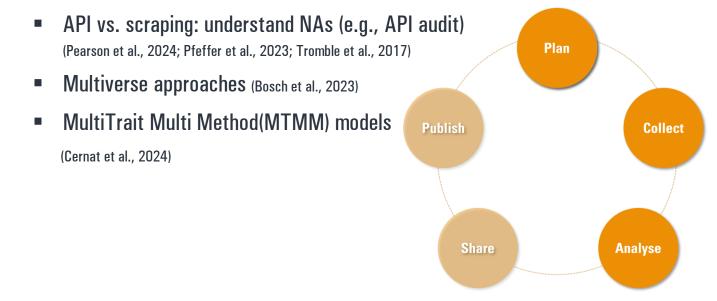


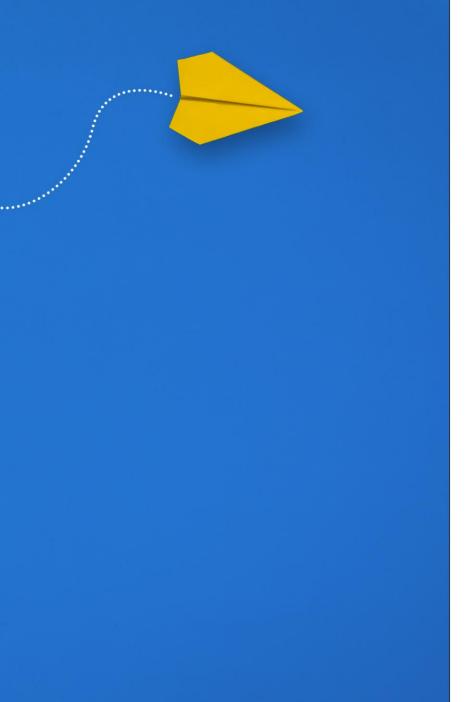
qualitative data helpful!



- 1. "How to"- Guidelines
- 2. Para data from initial data collection

3. Additional data collection/analysis methods

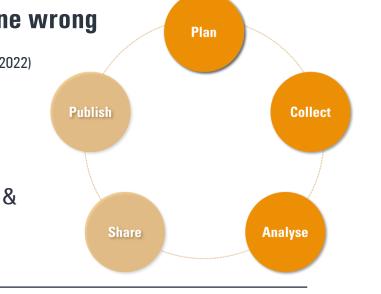


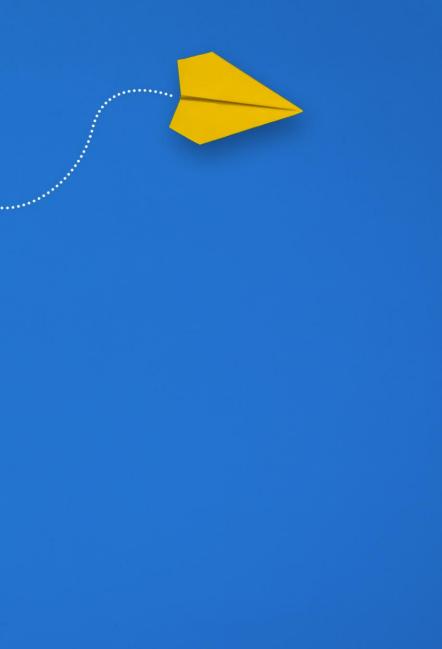


- 1. "How to"- Guidelines
- 2. Para data from initial data collection
- 3. Additional data collection/analysis methods

4. Simulate what could have gone wrong

- representation error: device-specific tracking (Bosch et al., 2024)
- Implications for direction, consistency, & size of effects





5. "How to"- guidelines & assessment tools

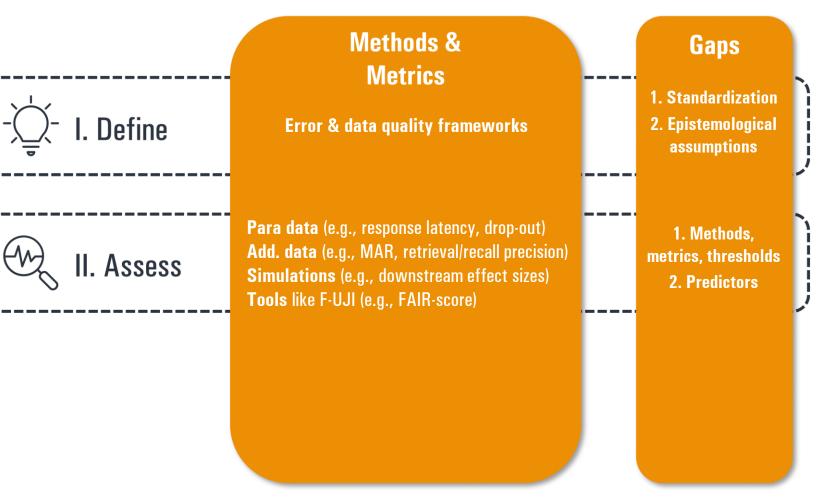
- FAIR checklists (Bahim et al., 2020)
- Assessment tools like F-UJI (Devaraju & Huber, 2021; Devaraju et al., 2022)

Table 1: FAIR data maturity model indicators.

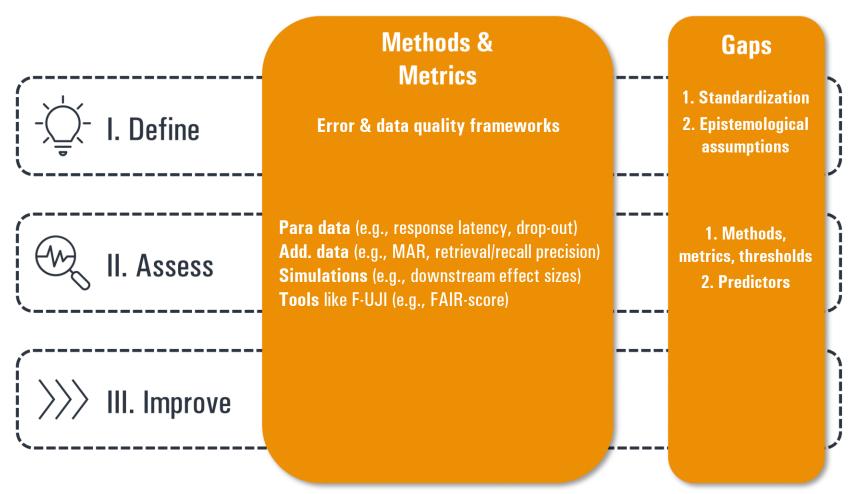
FAIR	ID	Indicator		Priority	
F1	RDA-F1-01M	Metadata is identified by a persistent identifier		Es:	sential
F1	RDA-F1-01D	Data is identified by a persistent identifier		Essential	
F1	RDA-F1-02M	1-02M Metadata is identified by a globally unique identifier		Es:	sential
F1	RDA-F1-02D	Data is identified by a globally unique identifier		Es:	sential
F2	RDA-F2-01M	Rich metadata is provided to allow discovery		Es:	sential
			Share	Analys	se
				-	

ASSESS QUALITY: GAPS

- Missing agreement upon... (Birkenmaier et al., 2024)
 - methods
 - metrics
 - thresholds for inacceptable quality
- Unclear predictors of quality issues (e.g., difference to surveys)



QUALITY FRAMEWORK

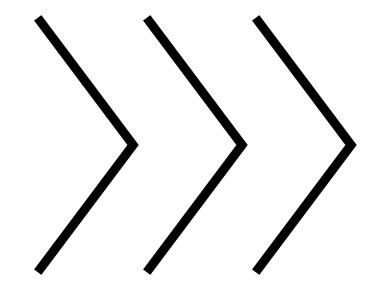


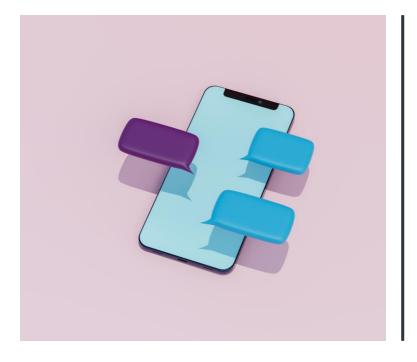
III. IMPROVE QUALITY

Criticizing our methods is great – but could (and should) we not **do more**?

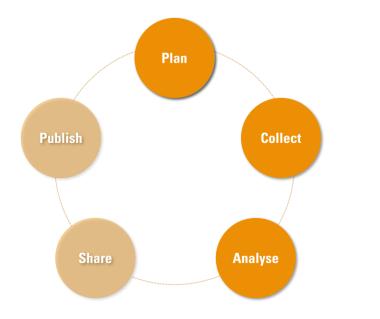
Be critical, but constructive:

Adapting existing (or developing new) error correction approaches as the next step in CSS.



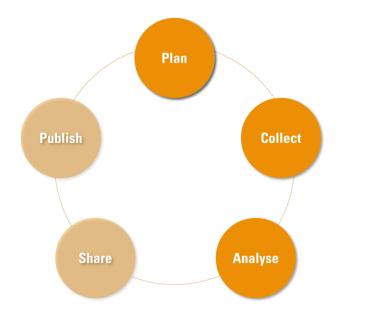


Can I use APIs to understand which news is shared across platforms? (Hase et al., 2023)



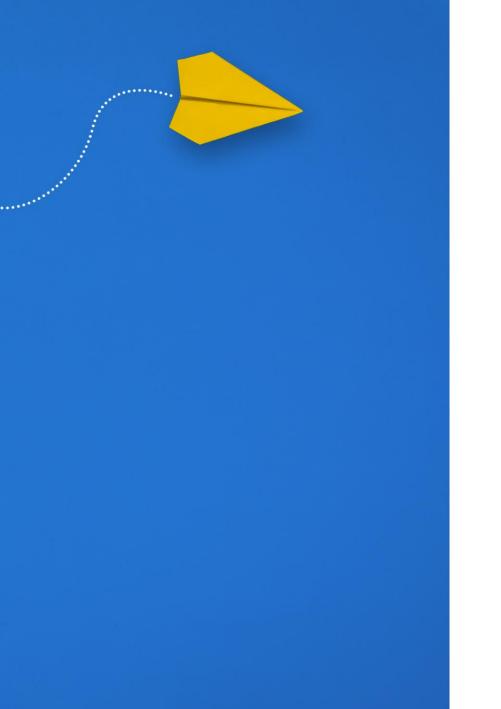
Intrinsic (error of representation & measurement error):

- \checkmark Combine data collection methods
 - e.g., (1) assess non-random missingness → (2) improve retrieval recall/precision via scraping, API, & manual collection



Intrinsic (error of representation & measurement error):

- $\checkmark~$ Combine data collection methods
- × Improve misclassification through error correction methods
 - e.g., improve errors in statistical ML inference via packages like
 misclassificationmodels (TeBlunthuis et al., 2024) or predictionerror (Fong & Tyler, 2021)

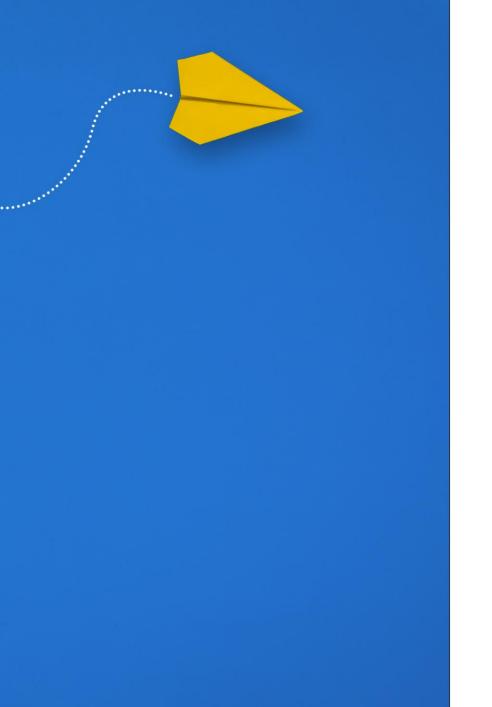


IMPROVE QUALITY

Interdisciplinary "clash":

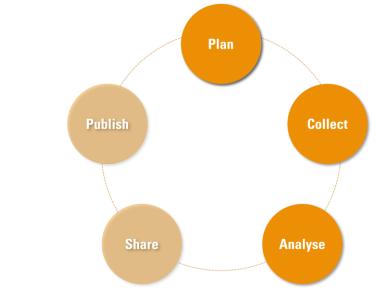
different definitions of quality + *different quality assessments* = **very** different error correction approaches

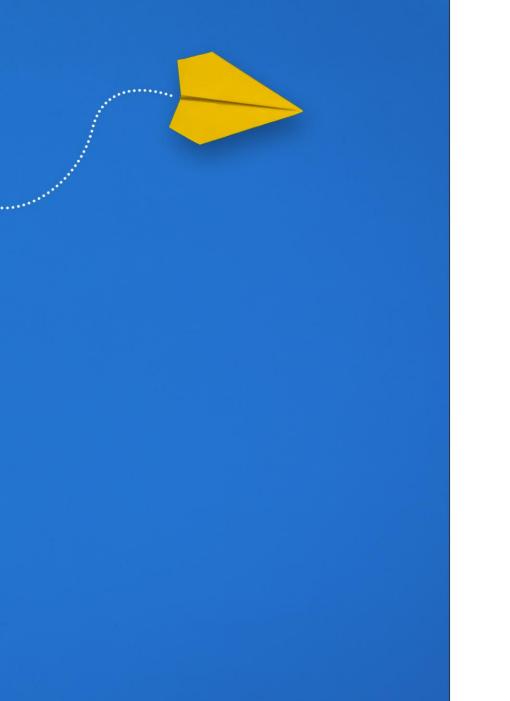
• Take **advantage** of this: Many ways to improve quality!



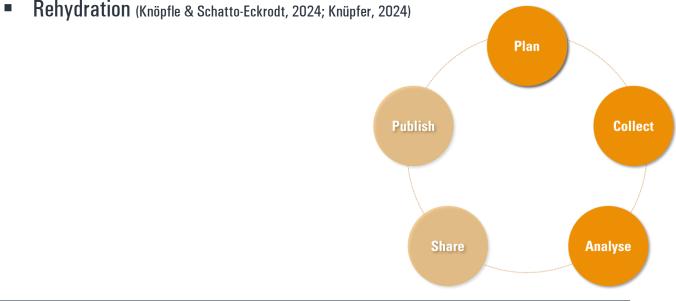
1. Plan ahead

- Talk to IRB, data protection officer, data stewards, ...
- Data management plan (e.g., use files), preregistration
- Consider non-proprietary methods

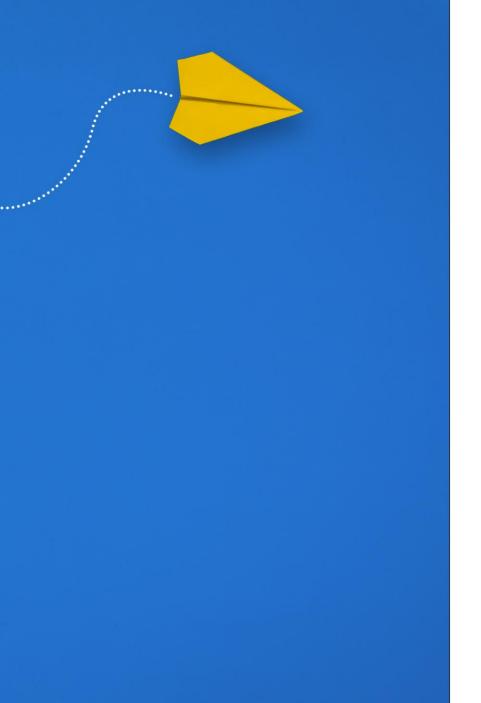




- 1. Plan ahead
- **Combine methods for data collection** 2.
 - Repeated/different data access

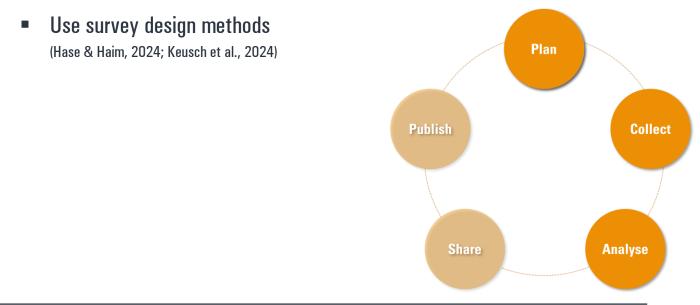


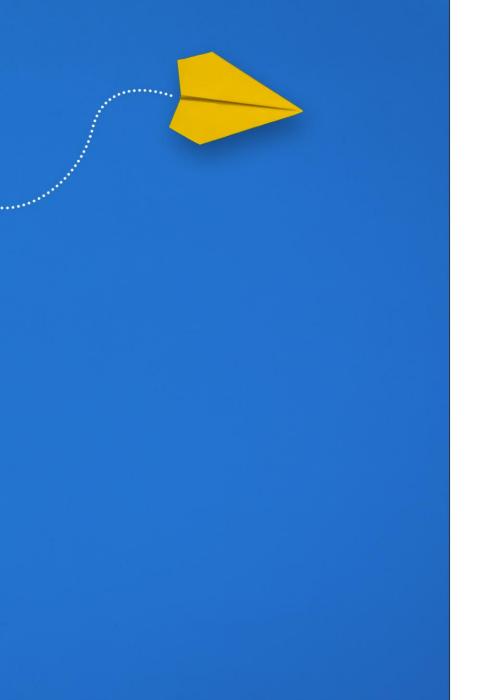
Rehydration (Knöpfle & Schatto-Eckrodt, 2024; Knüpfer, 2024)



- 1. Plan ahead
- 2. Combine methods for data collection

3. Turn "found" to "designed" data where possible

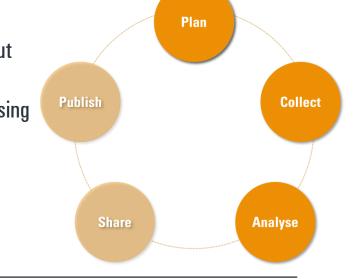




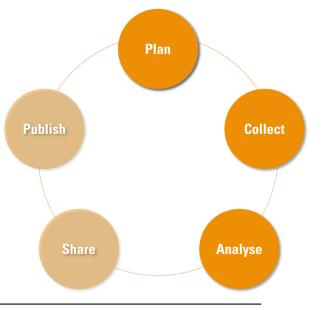
- 1. Plan ahead
- 2. Combine methods for data collection
- 3. Turn "found" to "designed" data where possible

4. Statistically correct for errors

- e.g., weighting to correct for drop-out (Pak et al., 2022)
- e.g., ML-classification for preprocessing (Fong & Tyler, 2021; TeBlunthuis et al., 2024)



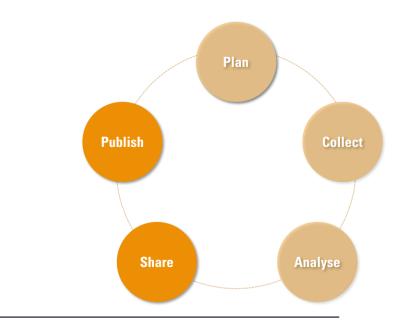
- 1. Plan ahead
- 2. Combine methods for data collection
- 3. Turn "found" to "designed" data where possible
- 4. Statistically correct for errors
- 5. Ask different questions
 - e.g., test effects of interventions on rather than describe individual behavior (Straub et al., 2024; Yu et al., 2024)





6. Document everything, including errors

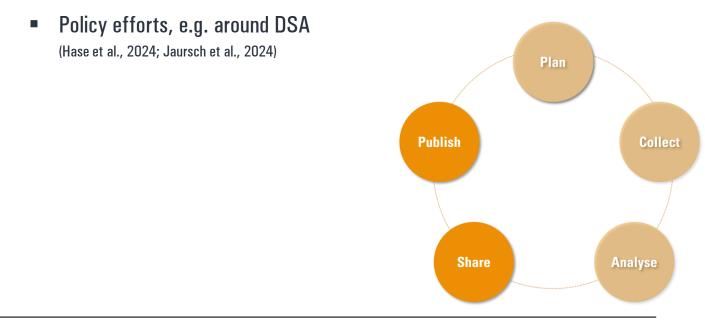
- Datasheets for Datasets (Gebru et al., 2021)
- Data Statements for NLP (Bender & Friedman, 2018)
- Total Error Sheets for Datasets
 (Fröhling et al., 2023)

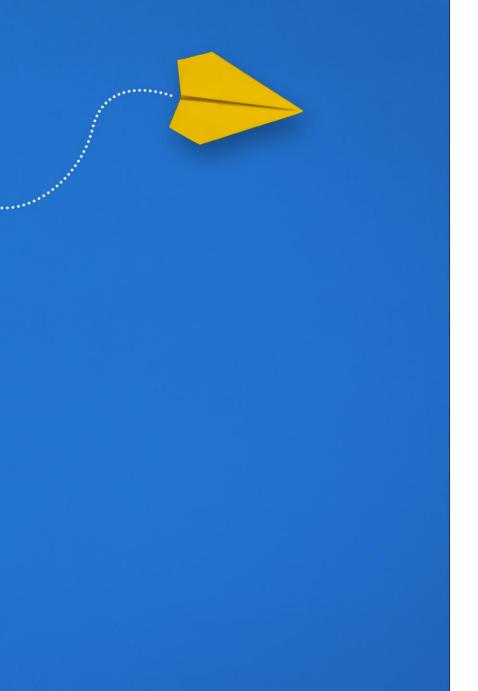


6. Document everything, including errors

7. Engage in community-based initiatives

Collective data collection (Pfeffer et al., 2023)

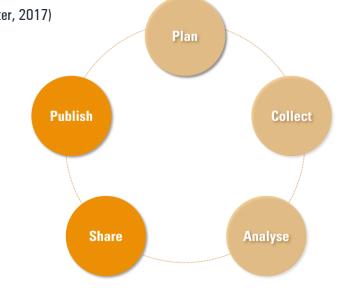




- 6. Document everything, including errors
- 7. Engage in community-based initiatives

8. Push for infrastructural changes

- Peer-reviewed data publications (Carpenter, 2017)
- Quality check badges (Gottfried et al., 2024)
- Funding of infrastructure initiatives

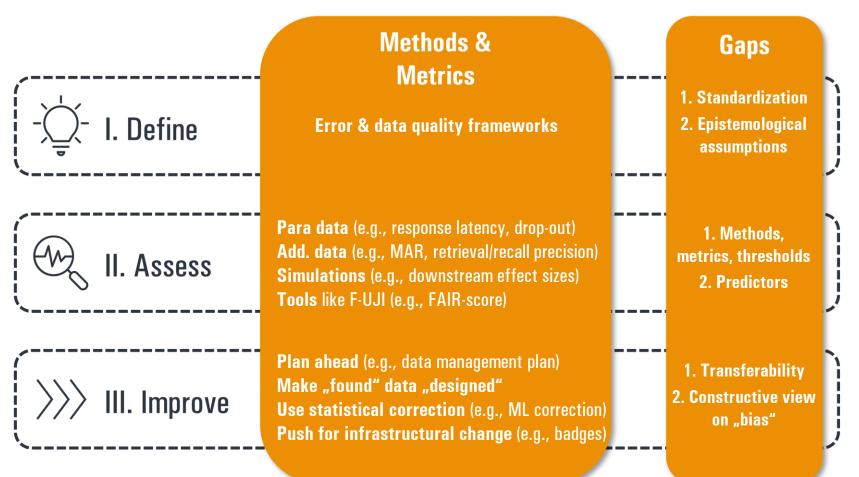




IMPROVE QUALITY: GAPS

- Transferability of existing error correction methods to CSS
- **Constructive perspective** on bias
 - Identify sub-populations by making "big data" small (Baek et al., 2022)
 - Explore power structures in society (Cabitza et al., 2023; Kathirgamalingam et al., 2024)

QUALITY FRAMEWORK



Dr. Valerie Hase, LMU Munich

iD orcid.org/0000-0001-6656-4894

() valeriehase

www.valerie-hase.com

